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ABSTRACT:  

Forecasts  of  10-m  wind  (U10)  and  significant wave  height (Hs)  from  the  National  Centers  for  

Environmental  Prediction  (NCEP)  Ensemble  Forecast System  are  evaluated  using  altimeter  data.  Four  

altimeter  missions  are  selected  for  the  assessment in  2017  that provide  a total  of  33,229,297  data 

points  matching  model  state  to  altimeter  measurement.  This  large  quantity  of  data allows  the  

investigation  of  the  error  as  a function  of  forecast ranges,  quantiles,  and  location.  Special  attention  is  

given  to  the  comparison  between  the  arithmetic  mean  of  the  ensemble  forecast and  the  deterministic  

forecast control  run.  Error  metrics  are  selected  to  quantify  and  separate  the  systematic  and  scatter  

components  of  the  error.  Results  indicate  a large  reduction  of  the  scatter  errors  (SCrmse)  in  the  

ensemble  mean  compared  to  the  control  run;  more  evident for  U10,  where  large  SCrmse  of  5  m/s  

associated  with  strong  winds  at mid-latitudes  beyond  forecast day  7  drops  to  3  m/s  for  the  ensemble  

mean.  This  benefit is  transferred  to  Hs  and  the  largest SCrmse  of  1.8  m  at the  control  run  is  reduced  to  

1.3  m  for  the  ensemble  mean.  Although  the  overall  forecast skill  of  the  ensemble  forecast is  improved,  

the  extreme  quantiles  of  Hs  and  U10  beyond  forecast day  5  tend  to  underestimate  the  observations.  

This  implies  a need  for  bias  correction  algorithms  applied during  post-processing  of  the  NCEP  ensemble  

products.  We  conclude  that for  reliable  wind  and  wave  forecasts  beyond  7  days  at mid  and  high  

latitudes,  it is  essential  to  use  ensemble  forecast products,  especially  when  associated  with  

extratropical  areas in the Southern Hemisphere.      
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1. Introduction 

The demand for reliable global forecasts of surface winds and waves has rapidly increased 

worldwide. This demand has followed population growth in coastal cities, and growth in offshore 

industries such as renewable wind energy and offshore oil and gas. Ship traffic has increased 300% 

since 1992 and shows an average increasing rate of 10% per year according to Tournadre (2014). This 

sector, among others, requires accurate predictions at longer forecast ranges, since most ship journeys 

exceed 1 week in duration. A containership crossing the Atlantic Ocean for example, considering a 

range of sailing speeds (Psaraftis and Kontovas, 2014), takes from 1 week to 20 days to complete the 

journey. Higher-quality wind and wave forecasts are also an essential element in operational 

oceanography programs that have been established around the world (Le Traon et al., 2015). 

The same need is valid for extreme weather forecasts, where a balance between time and accuracy 

is critical for issuing reliable alerts while allowing sufficient time to take safety actions. The use of 

ensemble forecasting approaches can extend model forecast skill to longer lead times, as discussed by 

Kalnay (2003). A usual approach to ensemble forecasting is to produce several numerical model 

integrations (members) simultaneously starting from perturbed initial conditions, which represent 

uncertainties in the initial model state. The arithmetic mean of the ensemble members has generally 

been proven to outperform deterministic simulations (i.e. a single control run). For the specific case of 

NCEP’s wave ensembles, benefits are larger beyond the 4th or 5th forecast day (Campos et al., 2018a). 

The combination of ensemble forecasts from several centers and models have further provided 

evidence that by incorporating model uncertainties in probabilistic products there is a significant 

increase in predictability (Candille, 2009). Such results have been a great motivation for operational 
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centers to invest in ensemble forecasts since the 1990s, and in the specific case of wave products since 

1998 (Hoffschildt et al. 1999). 

Our goal is to assess the NCEP Ensemble Forecast System, comparing the widely-used deterministic 

forecast with the ensemble approach. Although this was already attempted in previous studies, we 

expand those results by focusing on the spatial distribution of errors, in order to provide a global 

estimate of forecast skill for 10-m wind speed (U10) and significant wave height (Hs). We also extend 

the analysis using altimeter wave-height products from a constellation of four satellite missions, 

whereas previous studies were generally limited to using a smaller number of mission products. 

Therefore, our assessment exploits a large volume of data by using millions of pairs of model/satellite, 

which allows a multivariate analysis of the forecast errors and provide additional support for the 

construction of robust post-processing algorithms of bias corrections, such as Zieger et al. (2018), 

Harpham et al. (2016), Durrant et al. (2009), and new developments using machine learning techniques 

described by Boukabara et al. (2019). 

The NCEP Global Wave Ensemble Forecast System (GWES; Chen, 2006; Alves et al, 2013) runs a 10-

day forecast, four times per day, with space-time output resolution of 0.5° and 3 h. GWES contains 20 

perturbed members plus a control member (deterministic run) of the WAVEWATCH III model (Tolman 

2016), forced by the Global Ensemble Forecast System (GEFS) winds, and ice concentrations from the 

NCEP’s automated ice analysis system (Grumbine, 1996). Zhou et al. (2017) provide a complete 

assessment of GEFS, while Cao et al. (2007), Alves et al. (2013), and Campos et al. (2018a) analyzed the 

wave products of GWES. These prior results indicate that after the 5th forecast day, the ensemble mean 

from a single model produces a reduced scatter component of the error compared to the traditional 

deterministic run. 
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In addition to the NCEP prediction system, Bidlot (2017) performed a review and assessment of 

wave forecasts from 16 operational centers, using 21 years of in-situ observations. The three wave 

forecasts with the best scatter indexes according to his study are the European Centre for Medium-

Range Weather Forecasts (ECMWF), Météo France (METFR), and Service Hydrographique et 

Océanographique de la Marine (SHOM) – considering that METFR and SHOM both use winds from 

ECMWF. Besides, Bidlot (2017) discusses the evolution of wave forecast throughout time, highlighting 

the improvements over the last 10 years, with a reduction around 0.10 on the scatter indexes, 

depending on the in-situ station. Although the slightly better skill of ECMWF wave forecasts compared 

to NCEP according to Bidlot (2017), NCEP products have the advantage of being publicly available on 

global scale, with easy access, being widely used worldwide. 

Bunney and Saulter (2015) analyzed the UK Met Office wave ensemble that is driven by hourly wind 

fields from MOGREPS (Bowler et al., 2008 ), quantifying the uncertainties in short range (up to 7 days) 

for the Atlantic Ocean and around the UK. The authors found virtually nil bias for the overall statistics 

at the whole Atlantic domain but reported regional biases present in the UK, which pose an impact on 

the verification of short range forecasts, with low spread. It highlights the importance of performing a 

spatial analysis of forecast errors, which is one of our main goals. Saetra and Bidlot (2004) studied the 

potential benefits of using an Ensemble Prediction System (EPS) for waves and marine surface winds, 

and concluded that ECMWF EPS over-performs the control (“deterministic”) forecasts, despite the 

small tendency for overconfidence in the wave probability forecasts for waves above 6 and 8 m (more 

pronounced in the Southern Hemisphere). Our evaluation provide direct comparisons between the 

ensemble mean with control run and ensemble members using several error metrics, in order to 

investigate the performance and differences among results. 
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87 2.  Altimeter	 Data	an d	E valuation	 Method 	
 

The  work  of  Campos  et al.  (2018a)  provided  a multivariate  assessment of  GWES  using  buoy  data,  

studying  the  forecast error  as  a function  of  forecast days  and  severity.  Smaller  scatter  errors  were 

found  in  the  arithmetic  ensemble  mean  of  GWES  than  in  the  deterministic  forecast (control  run),  with  

a significant improvement of  the  predictability  at longer  forecast ranges.  However,  large  errors  were  

still  present in  GWES  beyond  forecast day  3,  associated  with  winds  above  14  m/s  and  waves  above  5  

m.  Because  the  results  of  Campos  et al.  (2018a)  are  only  representative  of  the  specific  buoy  locations  

where  error  metrics  were  calculated,  the  present study  aims  at filling  this  gap  by  using  altimeter  data 

in  the  GWES  assessment.  Our  present focus  is  on  a single  wave  ensemble  product from  NCEP’s  GWES,  

which  will  be  expanded  in  a future  study  to  include  combined  wave  products  from  multi-center  

ensemble  systems  such  as  those  planned  under  the  North  Atlantic  Ensemble  Forecast System  (NAEFS) 

framework (Alves et al., 2013) and multiple centers as addressed by Bidlot (2017).            

Uncertainties  in  altimeter  data have  been  investigated  by  Sepulveda et al.  (2015)  and  Queffeulou  

and  Croizé-Fillon  (2017).  They  found  the  altimeter  estimates  of  Hs  are  in  agreement with  buoys,  

containing  standard  deviations  of  the  order  of  0.3  m,  depending  on  the  satellite.  The  recent study  of  

Ribal  and  Young  (2019)  provide  a complete  assessment for  13  altimeters  covering  33  years  of  data,  

evaluated  against buoy  data from  the  National  Oceanographic  Data Center  (NODC).  The  comparisons  

for  U10  and  Hs  have  been  analyzed  and,  regarding  the  satellite  missions  selected  in  our  present study,  

Ribal  and  Young  (2019)  found  very  small  differences,  limited  to  0.5  m/s  and  0.10  m  respectively.  

Therefore,  considering  this  level  of  uncertainty  is  much  smaller  than  GWES  errors,  altimeter  data can  

be directly applied to our forecast assessment, after a quick additional          quality control.   
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The period of evaluation is 2017, when four satellite missions were selected from the AVISO and 

NESDIS databases: JASON 2, JASON 3, Saral, and Cryosat 2. Altimeter tracks were collocated into the 

regular GWES grid based on the methodology of Young and Holland (1996) and Sepulveda et al. (2015), 

where all satellite observations with a maximum space distance of 25 km and time distance of 0.5 

hours are averaged and then allocated to each grid point (Lat/Lon) at a specific time. In fact, a Gaussian 

function is applied to weight altimeter records by distance to the center grid point, providing one 

altimeter value per Lat/Lon/Time matching the regular GWES grid of 0.5°X0.5°. We have decided to 

collocate the altimeter data into the GWES space and not the opposite for a number of reasons: (i) to 

include an average of 10 to 20 altimeter records to a single GWES value, which increases the statistical 

significance of observations and reduce the impact of rare, but still possible, outliers and spikes; (ii) the 

high resolution of satellite sampling captures time and space scales that are different from the 

0.5°X0.5° model grid and would input a misleading comparison between datasets; (iii) to avoid several 

interpolations of GWES dataset to the satellite space and time; (iv) practical computational limitations 

involving the amount of data, which reduces the storage space and RAM memory use when collocating 

altimeter data into the GWES space. 

Figure 1 shows the count of altimeter measurements at each grid point that are used for the GWES 

assessments. This represents a large increase in the observations available for the calculation of the 

error metrics when compared to buoy assessments presented in Campos et al. (2018a), which permits 

a study of the spatial distribution of the model skill and also increases the statistical relevance of the 

analyses. A total of 33,229,297 pairs of GWES model state estimates and altimeter measurements 

were compiled for the assessments detailed in the following sections. 
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Figure  1  - Total  count  of  altimeter  measurements  per  GWES  grid point  for  2017.  132 

133 
134 Pairing  buoy  data with  hindcast  model  states  is  reasonably  simple  and  straightforward,  since  the  

buoy  is  at a fixed  location  and  the  hindcast consists  of  one  instant in  time,  both  having  regular  

temporal  resolution  –  and  when  this  is  not case,  interpolation  is  still  trivial.  The  task  is  more complex 

when  pairing  altimeter  data and  forecast models.  The  polar-orbit satellites  do  not measure  at fixed  

locations,  but rather  they  revisit a site  once  every  10–35  days  (Cooper  and  Forristall,  1997).  

Furthermore,  operational  forecasts  have  two  time  dimensions,  the  first related  to  the  forecast cycle  

(the  specific  time  of  the  analysis),  and  the  second  related  to  the  forward  forecast leads.  When  pairing  

certain  altimeter  measurement with  the  first instant of  the  forecast model,  by  the  time  the  next 

forecast step  comes,  the  altimeter  will  be  displaced  to  another  location,  which  compromises  the  

consistency of evaluating the whole forecast range with the same measurement.           

The  solution  we  use  here  is  to  make  the  forecast data selection  for  each  altimeter  measurement by  

moving  backwards  in  time,  instead  of  forward.  The  coordinate  of  the  altimeter  observation  is  used  as  a 

reference  point (e.g.  a certain  longitude,  latitude,  and  time)  and  matched  with  prior  forecasts  at 

various  lead  times  all  verifying  at the  same  reference  point.  For  example,  we  can  select the  24-hour  

forecast starting  from  1  day  prior,  the  48-hour  forecast starting  from  2  days  prior,  and  so  on.  This  
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149 procedure can also be applied with a temporal resolution of 6 hours, which is the time between 

150 consecutive GWES cycles (Figure 2). 

151 The ensemble introduces another dimension to the forecast system. The result is a matrix of 21 

152 members (20 plus the control run) times 10 days of forecast with 6-hour resolution (41 steps) at each 

153 model grid point. Each altimeter measurement allocated to the 0.5°X0.5° grid is paired to the 861 

154 model results (see Figure 3C). With a perfect forecast simulation, the matrix should present a value 

155 close to the measurement and Figure 3C, regarding the difference from GWES to the observation, 

156 should be close to zero. However, with model error and uncertainty in initial and boundary conditions, 

157 predictability deteriorates and the ensemble spread increases with time. 

158 

159 

160 Figure  2  - Schematic of  time  and  forecast  cycle  data  selection  (both  in  hours),  for  a  specific time  and  location  of  the  observation,  centered  
at  the  satellite  time  (green dashed line).  The  y-axis  shows  the  progress  of  forecast  cycle (resolution  of  6 hours)  and  the x-axis  presents  the  
forecast  time, involving  240  hours  (10  days) per  cycle.  The  “x”  sign  at  the  beginning  of each  array  illustrates  the  nowcasts;  in  black  are  the  
forecast  cycles  not  used  for  the  satellite/model  matchup, and the  blue  color  illustrates  the  41 forecast  cycles  selected for  the  comparison.  
The  41  red dots  are  the  exact  values  selected to  match the  single  satellite  observation,  each one  associated with a different  forecast  cycle  
but  having the  same  time.  When we  include  the  20  ensemble  members  to  each  of  these  41  selected  values,  it  is  obtained  the  matrix  
illustrated by Figure 3C.  
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This backward scheme of model and observation pairing, illustrated by Figure 2, was applied to the 

whole year of 2017. The most extreme event of Hs, presented in Figure 3, occurred in the Labrador Sea 

with maximum Hs of 12.5 at 59.0°N / 52.0°W on Jan-25-2017 06Z. Figure 3A shows the evolution of the 

ensemble members together with the control run and arithmetic ensemble mean, and Figure 3B 

presents the same information but fitting an empirical distribution function to the 21 ensemble 

members of each forecast cycle. From Figure 3B and Figure 3A, it is possible to note that 10 to 8 days 

prior to the event, the forecast system did not foresee the upcoming extreme conditions. From 

forecast day 7, the ensemble members started to diverge and the spread increased, although the 

ensemble mean (EM) was still very low compared to the severity of the event. It suggests that some 

GWES members initially pointed to extreme conditions. From forecast day 4 towards the nowcast, Hs 

moved to much higher values and the spread decreased, indicating that GWES correctly captured the 

event so small upgrades were made until the instant of maximum of the storm. Figure 3C presents the 

same evolution described, and shows how the underestimation of GWES members was modified 

throughout the forecast cycles and the approach of the extreme event. 

Figure 3 illustrates a successful prediction from GWES, at least considering the first seven forecast 

leads, and exemplified the high quality of wave forecast systems nowadays, also discussed by Bidlot 

(2017) through his historical analysis of evolution of forecast model skills. Another recent successful 

example of ensemble prediction was the Category 5 Hurricane Irma, in September 2017. The ensemble 

system of NCEP allowed forecasters and decision makers to issue the alert six days prior to the arrival 

of the event in the USA. Using one year of data covering the whole globe allow us to expand the 

assessment through a multivariate analysis using meaningful evaluation metrics. 
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Figure  3  –  Visualization  of  the most  extreme value of  Hs  (m) measured  by  altimeters  in  2017, at  59.0°N  52.0°W  on  Jan-25-2017,  and the 
GWES  performance  for  this  time  and  location.  In  this  event,  Cryosat2  recorded  the  maximum  Hs  of  12.5  m  at  Labrador  Sea.  Panel  (a) 
show  the  evolution  of  Hs for the  control  (cyan),  ensemble members  (black),  and  arithmetic  ensemble mean  (red)  as  a  function  of  forecast  
time,  associated  with  the  same  instant of  maximum  Hs,  plotted  as  the  dashed  straight line  (brown).  Panel  (B)  presents  the  evolution  of  
the  empirical  distribution  functions  of  the 21 ensemble members  for  each forecast  cycle,  covering from  the forecast  10 days  prior  to the 
event  (top)  until  the nowcast  (bottom);  where the x-axis  shows  Hs  and y-axis  the  forecast  time.  Panel  (C)  shows  the  difference  of  the  
GWES  members  minus  satellite  observation  (fixed  at  12.5  m)  involving  10  forecast  days (41  cycles)  and  20  ensemble  members,  where  
blue  colors  represent  underestimation of  GWES  and red colors  overestimation.  

200 
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202 Seven  metrics  are  calculated  to  investigate  the  behavior  of  the  GWES  errors, described  by 

equations  1  to  7; where �  is  the  GWES  forecast,  �  is  the  altimeter  data,  and  the  overbar  indicates  the  

arithmetic  mean. Willmott and  Matsuura (2005),  Jolliff  et al.  (2009), and   Mentaschi  et al.  (2013)  discuss  

the  limitations  of  using  the  root-mean-square  error  (RMSE)  for  model  assessments.  Chai  and  Draxler  

(2014),  on  the  other  hand,  argue  that just avoiding  RMSE  in  favor  of  mean  absolute  error  (MAE)  is  not 
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207 the  solution.  Instead,  Chai  and  Draxler  (2014)  suggest a combination  of  metrics  beyond  RMSE  and  

MAE.  Based  on  the  study  of  Mentaschi  et al.  (2013)  and  the  implementation  of  Campos  et al.  (2018a),  

we  give  special  attention  to  the  separation  between  the  systematic  error  (equations  1  and  2)  and  the  

scatter  component of  the  error  (equations  5  and  6),  as  well  as  absolute  (equations  1,  3,  and  5)  and  

normalized  metrics  (equations  2,  4,  and  6),  building  a complete  set of  metrics  to  evaluate  GWES.  The  

correlation  coefficient (CC)  is  also  included  (equation  7), where �!  and  �"  are  the  standard  deviations  

of  the  model  and  the  observations  respectively.  Unlike  other  the  metrics,  CC values  close  to  zero  

indicate poor results and the best models should be close to 1.            

The  normalized  metrics  (equations  2,  4,  and  6)  are  divided  by  the  observations  and  they  are  not 

divided  by  the  total  count of  samples,  �.  Mentaschi  et al.  (2013)  describe  each  error  metric  with  more  

details.  Therefore,  NBias,  NRMSE,  and  SI can  be  interpreted  as  ratios,  or  percentage  errors  when  

multiplied  by  100.  From  equation  6,  it can  be  seen  that the  scatter  index  (��)  is  the  normalized  scatter  

component of  the  RMSE  (������).  Furthermore,  equation  (1)  related  to  bias  is  the  same  as  equation  

(1)  of  Chai  and  Draxler  (2014),  related  to  MAE.  An  additional  discussion  and  guidance  regarding  

forecast verification can be found at Ebert et al. (2013).       
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3.  Assessment	 Results	 

 

Due  to  the  large  number  of  altimeter  data available  in  2017,  in  our  assessment of  GWES  we  can  

afford  to  resample  the  altimeter/GWES  pairs  as  a function  of  other  variables  that affect the  forecast 

skill.  Initially  the  assessment is  performed  as  a function  of  forecast time  and  sea-state  severity,  and  

then as a function of the location, building global         maps of GWES    errors.  

3.1  GWES	 wave-height	erro r	versu s	fo recast	tim e	and  	percentile	levels  	
 

The  scatter  component of  the  forecast error  is  presented  in  Table  1,  where  the  deterministic  

forecast (control  run)  is  compared  with  the  arithmetic  ensemble  mean,  EM.  While  the  results  for  the  

first forecast days  are  similar,  after  the  third  day  both  SI and  CC  increasingly  diverge,  with  the  EM 

presenting  much  smaller  errors  than  the  control  run.  For  U10,  for  example,  the  SI for  the  EM at day  10  

is  similar  to  the  SI of  the  deterministic  forecast at day  5  –  a gain  of  five  days  in  predictability  of  the  

wind  speed.  For  the  correlation  coefficient,  this  gain  is  equal  to  four  days.  For  the  SI of  significant wave  
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  U10  Hs 
 Forecast 

 Day 
 SI  CC  SI  CC 

Control   EM Control   EM Control   EM Control   EM 
 0  0.146  0.143  0.940  0.942  0.105  0.108  0.971  0.970 
 1  0.170  0.157  0.920  0.930  0.114  0.113  0.969  0.969 
 2  0.202  0.176  0.888  0.909  0.132  0.127  0.961  0.963 
 3  0.239  0.199  0.843  0.880  0.159  0.149  0.943  0.949 
 4  0.283  0.226  0.780  0.840  0.193  0.176  0.915  0.928 
 5  0.325  0.252  0.709  0.794  0.231  0.206  0.876  0.899 
 6  0.362  0.273  0.638  0.749  0.269  0.232  0.829  0.869 
 7  0.396  0.292  0.568  0.706  0.307  0.258  0.775  0.836 
 8  0.419  0.305  0.515  0.672  0.337  0.278  0.730  0.806 
 9  0.435  0.315  0.472  0.645  0.356  0.289  0.686  0.781 
 10  0.449  0.322  0.438  0.622  0.377  0.301  0.645  0.758 

  

  

 

 

240 height (Hs),  there  is  a gain  of  three  days.  Table  1  highlights  the  importance  of  ensemble  forecasting  for  

those  interested  in  longer  forecasts  ranges,  especially  after  the  fifth  day.  Table  1  also  shows  that the  

forecast for Hs present better results than for U10, for the whole forecast range.            

The  complete  assessment of  wave  forecasts  provided  by  Bidlot (2017),  involving  16  operational  

centers,  found  SI from  0.13  to  0.20  for  the  nowcast and  0.30  to  0.37  on  day-5.  Although  a direct 

comparison  of  Bidlot (2017)  with  Table  1  is  not possible  due  to  different observations  utilized,  it is  

interesting  to  note  that the  assessment of  Hs  from  GWES  for  both  the  EM and  the  control  run  present 

smaller  errors  than  reported  by  Bidlot (2017),  where  the  SI of  the  GWES  nowcast is  0.10  and  day-5 is 

0.20  to  0.23.  It is  worth  to  follow  the  next reports  issued  by  the  Lead  Centre  for  Wave  Forecast 

Verification (LC- WFV)  that will  probably provide a more suitable comparison involving recent data.        

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 
251 Table  1  –  Scatter  Index (SI) and  Correlation  Coefficient  (CC) as  a  function  of forecast  time, from  day  0  (nowcast) to  day  10.  For  each  

variable  and error  metric,  the  control  run is  compared with the  arithmetic  ensemble  mean (EM)  of  the  20  members.  Results  integrate  the  
assessment  of  the  whole  globe  using a ltimeter  data.  

252 
253 

254 

255 

256 Following  the  assessment structure  of  Hernandez et al.  (2015),  we  complement the  error  metrics  

with  the  Taylor  Diagram  (Taylor,  2001)  as  it summarizes  multiple  aspects  of  model  performance.  Figure  257 
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258 4  confirms  the  increasing  error  with  forward  forecast leads  and  divergence  of  ensemble  mean  from  the  

control  run  and  ensemble  members.  For  U10  this  evolution  leads  the  EM to  progressively  

underestimate  the  observations.  For  Hs,  the  EM dots  in  the  Taylor  Diagram  are  also  on  the  left of  the  

control  run  and  ensemble  members,  but without underestimation  (on  the  right of  the  green  curve).  

Both  Table  1  and  Figure  4  show  very  small  correlation  coefficients  associated  with  forecast day  10,  

around  0.44  for  U10  and  0.65  for  Hs  regarding  the  control  run.  These  values  are  significantly  improved  

to  0.62  and  0.76,  respectively,  when  using  the  EM.  The  same  increasing  rate  of  improvement 

throughout forecast time  of  the  EM compared  to  the  control  run  is  found  in  the  RMSE,  which  can  be  

easily noticed using the Taylor Diagrams.       
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274 

Figure  4  –  Taylor  Diagrams  for  U10  (left)  and Hs  (right) regarding  three  forecast  ranges: day-0,  day-5,  and day-10.  In terms  of  plot,  the 
black dashed rays  indicate  the  correlation coefficient,  the  dashed-dot  black curves  indicate  the  standard deviation (from  which can be  
inferred  a  relative  underestimation  or  overestimation  of  results),  and  the  dotted  blue  curves  are  the  RMSE.  The  green  line  presents  the  
satellite  observation  as the  reference.  Concerning  the  results,  the  20  ensemble  members are  plotted  in  black,  the  control  run  in  cyan,  and  
the  EM  in  red.  Markers  on the  right  side  of  the  green curve  indicate  overestimation of  the  model  in regards  to the  satellite  observation,  
whereas  results  on  the  left  side  indicate  underestimation.  

275 

276 
277 We  next examine  errors  for  changing  severity  of  wave  heights  and  wind  speed.  Each  quantile,  

which  is  the  inverse  of  the  cumulative  distribution,  is  calculated  for  increasing  percentiles  from  0  to  278 
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98%. In Figure 5 we visualize errors for wave conditions ranging from calm to extreme, together with 

the forecast time and compare the control run to the EM, with respect to the systematic (bias) and 

scatter errors (������). Typically, the largest errors are associated with longer forecast ranges and 

higher percentiles. These results indicate that the global assessment using altimeter data agrees with 

the previous results of Campos et al (2018a) using buoy data, where it was found that the largest 

errors occur after the fourth day of forecast under severe conditions. Systematic errors are similar 

between the deterministic and probabilistic forecasts, as expected. However, there is a large reduction 

of the scatter errors in the EM. This is more evident for U10, where the ������ above 4 m/s 

associated with strong winds beyond forecast day 7 drops to values around 2 m/s. The benefit on the 

surface winds using the ensemble approach is propagated to the wave fields and the largest ������ 

of 1.8 m is reduced to 1.3 m. 

The problem of increasing bias with severity and percentiles is not addressed by the ensemble 

approach and requires investigation on model tuning and development of bias correction post-

processing; which is out of the scope of our study. Regarding simplistic bias correction, for example, 

Reguero et al. (2012) based on Mínguez et al. (2011) suggested an efficient calibration of wave 

simulations with satellite altimetry data, while Campos et al. (2018b), based on Tolman (1998), used 

buoy and scatterometer data to calibrate surface winds and wave model parameters. 

The systematic errors combined with low spread, usually at short-range forecasts, can be a 

problem as the ensemble spread does not properly represent the uncertainties of the prediction 

system - discussed by Bunney and Saulter (2015). Figure 5 suggests that this is not critical for GWES as 

the largest biases are found beyond forecast day 4. Nevertheless, Saetra and Bidlot (2004) found a 

small tendency for overconfidence in the wave probability forecasts for large waves above 6 and 8 m. 
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301 For  this  reason,  we  decide  to  include  the  estimation  of  the  spread  as  a function  of  forecast time  and  

percentile  (Figure  6),  as  a complement to  Figure  5.  The  largest spread  for  both  U10  and  Hs  are  found  

beyond  forecast day  6  and  associated  with  U10  above  10  m/s  and  Hs  above  4  m.  It matches  the  

combination  of  percentiles  and  forecast ranges  with  large  bias  and  ������,  representing  the  

increased uncertainties of the N    CEP ensemble prediction system.     

302 

303 
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311 
312 
313 
314 
315 
316 

Figure  5  –  Bias  (top  row) and  ������  (bottom  row) as a   function  of forecast t ime  (y-axis)  and quantiles  (x-axis).  For  the  bias  plots,  blue  
colors  indicate  that  the  model  underestimates  the  observations,  while  red  colors  indicate  the  model  overestimates  the  observations.  The  
first t wo  columns o n  the  left a re  the  wind  speed  at 1 0m  (U10) in  m/s, and  the  two  columns on the right the significant wave height (Hs) in  
meters.  

317 

318 Figure  6  –  Spread  of  the  20  ensemble  members  as  a  function  of  forecast  time  (y-axis)  and quantiles  (x-axis),  for  U10  (left) and  Hs  (right).  
319 
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The large number of observations in satellite databases relative to buoys, also allows a deeper 

investigation in the probabilistic domain so it can be verified if the forecast results can reproduce the 

distribution of observations. Same as performed by the ensemble assessment of Bunney and Saulter 

(2015), QQ-plots and probability distribution functions (PDFs) of U10 and Hs are presented in Figure 7, 

divided into three different forecast ranges. 

The nowcast shows a good agreement between ensemble members, the arithmetic ensemble 

mean (EM), and the control run, with values close to perfect agreement. For the upper percentiles, the 

agreement of Hs from GWES with observations is better than the agreement for U10, where the 

strongest winds are slightly overestimated by the NCEP forecast. Moving to forecast day 5, the 

ensemble members and the control run start to diverge from the ensemble mean (EM). In the highest 

quantiles, particularly at longer lead times, the ensemble members and the control run tend to 

overestimate U10 and Hs compared to the observations, while the EM underestimates measurements 

of U10 at the longest lead times – confirmed by both QQ-plots and PDFs. The EM tends to 

overestimate measurements of U10 and Hs in calm and moderate conditions. The evolution of Hs 

quantiles closely follows U10, with Hs slightly shifted to higher values for the GWES in relation to 

altimeters, possibly due to tuning of the wave model parameters that control the transfer of 

momentum from surface winds to the wave spectra. Other explanation may be that altimeters under-

sample more extreme sea states (Alves and Young, 2004), and spatial aliasing in model simulations may 

move the location of such cases into calmer regions depicted in the satellite data. 
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Figure  7  - QQ-plots  and probability density functions  (PDFs)  for  three  different  forecast  ranges.  The  first  two rows  at  the  top of  the  figure  
show  wind  results (U10),  in  m/s,  while  the  two  bottom  rows  show  results  for  wave  heights  (Hs),  in  meters.  Black:  ensemble  members.  
Cyan:  control  run.  Red:  ensemble mean.  The shaded brown at  the PDF  plots  represents  the empirical  PDF,  for  the observations.  

 
 

 

 

 

 

 
 
 
 

  

 

 

 

 

 

342 

343 

344 

345 
346 
347 
348 

349 

350 The  PDF  plots  of  Figure  7  corroborates  with  the  results  from  the  QQ-plots.  They  are  also  useful  to  

indicate,  through  the  density  function,  where  in  terms  of  intensity  the  bulk  of  the  altimeter  

measurements  (shaded  brown)  is  concentrated,  since  they  are  invariant to  the  forecast time,  as  

discussed  before.  The  PDFs  show  most of  the  occurrence  of  U10  between  5  to  10  m/s  and  Hs  between  

1  to  4  m,  which  suggests  that the  discrepancy  at larger  quantiles  should  have  a minor  impact on  the  
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375

average statistics and error metrics, however, these discrepancies remain relevant. Figure 7 shows that 

356 the arithmetic ensemble mean (EM) of the ensembles deteriorates the tail of the PDF when compared 

357 to the observations, which can severely compromise the higher-order probabilistic moments and 

358 possible applications involving extrapolation and extreme value analysis (EVAs). In regards to the NCEP 

359 ensemble, this is more evident for U10 than Hs. This is an expected consequence of using the 

arithmetic EM, which eliminates higher wave-height values associated with ensemble member that 

361 may be closer to the “true” wave height. This result in itself justifies the development and use of 

362 alternative ways to determine ensemble means and probabilistic products in general, such as the 

363 proposed use of nonlinear means obtained via the use of neural networks made in a separate paper 

364 (e.g., Campos et al, 2019). 

366 3.2 Spatial distribution	 of GWES	 errors 
367 

368 The construction of error maps was based on the methodology of Young and Holland (1996). After 

369 allocating the satellite tracks into the regular GWES grid of 0.5°X0.5° (section 2), the matchups of 

altimeter and GWES were selected within the radius of 2° to compute the error statistics for each 

371 location. Equations 1 to 7 were applied to calculate the metrics for given latitudes and longitudes, 

372 building the global maps of different types of errors. Once again, the emphasis will be on the 

373 interpretation of systematic and scatter errors separately. 

374 Figure 8, Figure 9, and Figure 10 present the main results of this paper, containing the maps of bias, 

������, and RMSE of GWES. It is now possible to clearly notice a strong spatial dependence of GWES 

376 errors, with the effect of the Atmospheric Circulation including the Hadley and Ferrel Cells, as well as 
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the ITCZ and latitudes dominated by westerly winds. We can confirm the increase of GWES errors with 

longer forecast ranges; however, the rate is much larger at mid-latitudes than at tropical locations. This 

effect can be visualized in Figure 11 where the errors were integrated over the longitude to provide the 

errors versus Latitude. 

First looking at the bias of the nowcasts (forecast day 0), both control and EM of U10 in Figure 8 

present a small overestimation of wind intensities compared to the measurements. In extratropical 

areas this behavior increases when moving to forecast day 5 and 10 but the opposite occurs at the 

Equator, where GWES starts to underestimate the wind measurements. The bias of Hs, instead, shows 

a slight underestimation at the nowcast over the entire grid except in some extratropical locations in 

the Southern Hemisphere, more evident in the EM. On forecast days 5 and 10, the overestimation of 

Hs at mid-latitudes becomes much larger and non-symmetric in terms of Northern and Southern 

Hemispheres. For both U10 and Hs, the differences between the control run and EM increases mainly 

at extratropical locations with longer forecast ranges, confirmed by Figure 11, where the EM has larger 

bias than the control. 

The scatter components of the errors (������) of U10 and Hs are small at the nowcast and very 

similar between the control member and EM. The ������ increases at extratropical areas on forecast 

day 5 and 10, as well as the differences between the control and EM. In this case, the control member 

has much larger errors than the EM. The forecast day 10, for example, shows ������ of U10 around 5 

m/s for the control member and 3.5 m/s for the EM at mid-latitudes. Regarding Hs, the ������ is 1.8 

m for the control member and 1.3 m for the EM. It can be visualized by the global maps of Figure 8 and 

Figure 9, as well as the error distribution over the latitudes of Figure 11. 
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399 

400 
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403 
404 

Figure  8  –  Global  maps  of  GWES  error  of  U10  (in  m/s), comparing  the  control  run  (deterministic  forecast) with  the  arithmetic  ensemble  
mean  (EM,  probabilistic  forecast).  Bias  in  the  first  two  top  lines  (red  being  overestimation  of  GWES  and  blue  underestimation)  and  
������  in  the  last  two  bottom  lines  of  plots. Columns  represent  different  forecast  times:  left  column  the  nowcast,  center  column  day-5 
forecast, and  right c olumn  day-10 forecast.  

405 

406 

407 

408 

409 

410 

411 

412 

413 

21 



 
 

 

  

  

 
 
 
 

  

 

 

 

 

 

 

414 

415 

416 
417 
418 
419 

Figure  9  - Global  maps  of  GWES  error  of  Hs  (in  meters), comparing  the  control  run  (deterministic  forecast) with  the  arithmetic  ensemble  
mean  (EM,  probabilistic  forecast).  Bias  in  the  first  two  top  lines  (red  being  overestimation  of  GWES  and  blue  underestimation)  and 
������  in  the  last  two  bottom  lines  of  plots. Columns  represent  different  forecast  times:  left  column  the  nowcast,  center  column  day-5 
forecast, and  right c olumn  day-10 forecast.  

420 

421 The  error  maps  of  Figure  10  present the  final  results  of  RMSE,  where  it is  possible  to  confirm,  again,  

the  dependence  of  wave  height errors  on  the  quality  of  surface  wind  speeds.  As  indicated  by  equation  

(5),  the  RMSE  combines  the  systematic  and  scatter  error.  Jolliff  et al.  (2009)  investigate  how  the  bias  

contributes  to  the  magnitude  of  the  total  Root-Mean-Square  Difference.  For  our  specific  analysis,  it has  

been verified  that ������  is  at least twice  the  bias,  and  so  the  RMSE  is  influenced  more  by  the  

increase  of  scatter  errors  than  by  the  systematic  errors.  In  general,  at forecast day  10,  the  reduction  of  
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427 RMSE of the EM compared to the deterministic run (control) varies from 20% to 30%, and smaller 

428 improvements are found at tropical locations. 
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Figure  10  –  Final  Global  maps  of  RMSE  of  U10  (in  m/s) in  the  two  top  row  and  Hs  (in  meters) at  the  two  bottom  rows, comparing  the  
control  run  (deterministic forecast)  with  the  arithmetic ensemble  mean  (EM,  probabilistic forecast).  Columns  represent  different  forecast  
times:  left column th e  nowcast,  center  column d ay-5 forecast,  and right  column day-10 forecast.  

437 
438 The  forecast errors  versus  Latitude  presented  by  Figure  11  partially  present redundant information  

to  Figure  8  and  to  Figure  10.  However,  the  comparisons  of  curves  as  well  as  the  correlation  coefficient 

plots  provide  additional  information  regarding  differences  between  Northern  and  Southern  

Hemispheres.  The  systematic  errors  of  U10  and  Hs  at extratropical  latitudes  in  the  Southern  

Hemisphere  are  much  larger  than  the  same  in  the  Northern  Hemisphere  –  valid  for  the  whole  dataset 

including  ensemble  members,  control  run,  and  ensemble  mean.  At forecast day  10  the  bias  of  Hs  at 

50°S  is 0.50  m  while  at 50°N  it is  0.15  m.  For  the  wind  speeds  these  differences  are  not as  large  as  for  
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445 Hs  but the  bias  of  the  EM of  U10  in  the  Southern  Hemisphere  reaches  0.7  m/s  while  in  the  Northern  

Hemisphere  it does  not exceed  0.5  m/s.  Such  discrepancies  are  not very  pronounced  in  the  scatter  

errors  but the  correlation  coefficients  also  point to  worse  performances  in  the  Southern  Hemisphere,  

especially in locations south of 50°S.       
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Figure  11  –  GWES  errors  versus  Latitude  for  U10  (in  m/s) and  Hs  (in  meters).  From  left  to  right: Bias, SCrmse, RMSE, and  CC  
(dimensionless).  The  top  rows  contain  results  for  the  forecast  day-5 and the two bottom  rows  for  forecast  day-10.  Black curves:  ensemble 
members.  Cyan  curves:  control  run.  Red  curves:  ensemble  mean.  
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458 The  unbalanced  performance  of  NCEP  ensemble  forecasts  of  U10  and  Hs  between  Hemispheres 

might be  associated  with  the  larger  amount of  continent and  observations  in  the  Northern  

Hemisphere.  Moreover,  the  larger  ocean  basins  in  the  Southern  Hemisphere  allow  errors  to  propagate  

further  distances  and  longer  periods  which  can  propagate  and  accumulate  forecast errors.  This  is  just a 

speculation  and  this  subject requires  more  investigation  since  the  Southern  Ocean  is  known  to  be  an  
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463 extremely  dangerous  area to  sail,  and  depends  on  the  performance  of  global  forecasts  as  the  NCEP  

ensemble  forecast system.  Moreover,  although  the  correlation  coefficient plots  of  Figure  11  indicate  

better  performances  at tropical  areas,  they  also  show  a small  deterioration  of  the  forecast at the  

Equator,  which  could  be  associated  with  mesoscale  storms  that are  not properly  simulated  by  the  

resolution  of  0.5°  of  GWES.  This  might be  the  reason  why  the  effect is  more  evident for  U10  than  Hs  

that respond much more to synoptic scale wind fetches.         

Finally,  Figure  11  also  confirms  an  unexpected  feature  found  in  the  previous  figures,  where  Hs  and  

U10  biases  are  larger  for  the  EM than  for  the  control  run,  especially  at longer  forecast ranges.  It is  well-

known,  as  described  before,  that the  ensemble  approach  reduces  the  scatter  error  and  improves  the  

correlation  coefficient,  and  it is  not meant to  reduce  bias.  However,  we  expected  similar  values  of  bias  

of  the  EM compared  to  the  control  run  and  ensemble  members,  and  not larger  biases.  This  problem  

does  not severely  compromise  the  overall  performance  of  the  ensemble  product since  the  greatest 

portion of the RMSE comes from the scatter component of the error (           ������), as concluded above.     

 
4.  Conclusions 	

 
The  multivariate  distribution  of  the  NCEP  Global  Wave  Ensemble  System  (GWES)  errors  has  been  

investigated  using  altimeter  data and  seven  error  metrics,  giving  special  attention  to  the  comparison  

between  the  control  run  (deterministic  forecast)  and  the  ensemble  mean.  The  first characteristic  we  

observe,  which  confirms  previous  assessment studies  including  Cao  et al.  (2007)  and  Alves  et al.  (2013),  

is  the  reduction  of  the  scatter  errors  of  the  ensemble  forecast beyond  the  fifth  day  compared  to  the  

control  run. Table  1  shows  a gain  of  three  to  five  days  in  predictability  of  Hs  and  U10.  This  is  also  in  

agreement with  Saetra and  Bidlot (2004)  based  on  ECMWF  products,  who  found  that the  arithmetic  
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ensemble mean outperforms the control run. Figure 5 and Figure 7 add the increasing percentiles into 

the analysis and highlight the challenge of predicting extreme events using both ensemble and 

deterministic forecasts. The arithmetic mean of the ensemble members has smaller scatter error but 

shows underestimation of extreme events, which compromises the extremal tail of the PDFs. 

As described by Jolliff et al. (2009), the “skill” portion of skill assessment may be mathematically 

defined, but the “assessment” will invariably rely upon the value judgments of the investigator. Based 

on our results, GWES users can judge and decide to use deterministic or ensemble forecasts, and have 

detail information of Hs and U10 errors for their specific locations and magnitude of interest. 

Considering the discussion of Willmott and Matsuura (2005), Jolliff et al. (2009), and Mentaschi et al. 

(2013), combined with our multivariate assessment and the whole set of results, we conclude that the 

arithmetic ensemble mean of GWES, derived from the probabilistic forecast, significantly outperforms 

the control run and the NCEP deterministic forecast. 

Several studies have investigated the spatial behavior of wave models, as for example Stopa and 

Cheung (2014) and Campos and Guedes Soares (2016); however, this is the first work concerning the 

spatial distribution of the error of a global wave ensemble forecast. We identified similar systematic 

errors between the control and the EM calculated by integrating results over the entire globe. When 

the bias was calculated for each location, we see a heterogeneous distribution in space. In most 

locations, the EM has larger bias than the control member and this difference is larger for Hs than for 

U10, i.e., the bias of the EM of Hs is much higher than the control member, especially in the Southern 

Hemisphere. One possible explanation is the larger portions of water in the Southern Hemisphere, 

which makes the wave model to amplify small systematic errors. The analysis using maps of ������ 

shows the great benefit of the ensemble approach mainly at mid-latitudes and longer forecast ranges. 
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508 Therefore,  for  reliable  wind  and  wave  forecasts  beyond  7  days  at mid  and  high  latitudes,  it is  essential  

to  use  ensemble  forecast products,  however  it is  also  essential  to  apply  a geographically  dependent 

bias correction.   

The  bias  of  the  EM at longer  forecast ranges  is  higher  than  the  control  run  but the  scatter  errors  of  

the  EM are  much  smaller  than  the  control.  The  discrepancies  between  them  increase  poleward  of  20°N 

and  20°S.  Therefore,  if  an  efficient bias  correction  algorithm  could  be  applied  to  the  ensemble  forecast 

in post-processing,  this  could  maintain  small  scatter  errors  inherent to  the  ensemble  approach  while  

reducing  the  systematic  errors  of  the  GWES.  Further  than  encouraging  the  use  of  probabilistic  wave  

model  products  in  support of  wave  guidance  to  marine  weather  forecasts,  the  results  presented  in  this  

paper  support the  idea that the  development of  alternative  methods  to  determine  ensemble  means  is  

warranted.  A  step  in  that direction  is  discussed  in  a companion  paper  (e.g.,  Campos  et al.,  2019).  

Although  our  results  are  limited  to  products  from  a single  wave  ensemble  system,  it is  believed  that 

the  benefits  outlined  here  would  also  be  sustained  when  assessing  results  from  combined  ensemble  

products, which will    be the subject of work to be pursued in the near future.            
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531 Data  sources  

NCEP’s Global   Wave Ensemble Forecast:    

•  ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/wave/prod  

Altimeters:  

•  ftp://avisoftp.cnes.fr/AVISO/pub/  

•  ftp://ftp.star.nesdis.noaa.gov/pub/sod/lsa/cs2igdr/  
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